1 /* 2 Copyright (c) 2013-2018 Timur Gafarov 3 4 Boost Software License - Version 1.0 - August 17th, 2003 5 6 Permission is hereby granted, free of charge, to any person or organization 7 obtaining a copy of the software and accompanying documentation covered by 8 this license (the "Software") to use, reproduce, display, distribute, 9 execute, and transmit the Software, and to prepare derivative works of the 10 Software, and to permit third-parties to whom the Software is furnished to 11 do so, all subject to the following: 12 13 The copyright notices in the Software and this entire statement, including 14 the above license grant, this restriction and the following disclaimer, 15 must be included in all copies of the Software, in whole or in part, and 16 all derivative works of the Software, unless such copies or derivative 17 works are solely in the form of machine-executable object code generated by 18 a source language processor. 19 20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT 23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE 24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, 25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 DEALINGS IN THE SOFTWARE. 27 */ 28 29 module dagon.physics.solver; 30 31 import std.math; 32 import std.algorithm; 33 34 import dlib.math.vector; 35 import dlib.math.utils; 36 37 import dagon.physics.rigidbody; 38 import dagon.physics.contact; 39 40 void prepareContact(Contact* c) 41 { 42 if (!c.shape1.active || !c.shape2.active || 43 !c.shape1.solve || !c.shape2.solve) 44 return; 45 46 RigidBody body1 = c.body1; 47 RigidBody body2 = c.body2; 48 49 Vector3f r1 = c.body1RelPoint; 50 Vector3f r2 = c.body2RelPoint; 51 52 Vector3f relativeVelocity = Vector3f(0.0f, 0.0f, 0.0f); 53 relativeVelocity += body1.linearVelocity + cross(body1.angularVelocity, r1); 54 relativeVelocity -= body2.linearVelocity + cross(body2.angularVelocity, r2); 55 c.initialVelocityProjection = dot(relativeVelocity, c.normal); 56 57 c.n1 = c.normal; 58 c.w1 = c.normal.cross(r1); 59 c.n2 = -c.normal; 60 c.w2 = -c.normal.cross(r2); 61 62 c.effectiveMass = 63 body1.invMass + 64 body2.invMass + 65 dot(c.w1 * body1.invInertiaTensor, c.w1) + 66 dot(c.w2 * body2.invInertiaTensor, c.w2); 67 } 68 69 void solveContact(Contact* c, double dt) 70 { 71 if (!c.shape1.active || !c.shape2.active || 72 !c.shape1.solve || !c.shape2.solve) 73 return; 74 75 RigidBody body1 = c.body1; 76 RigidBody body2 = c.body2; 77 78 Vector3f r1 = c.body1RelPoint; 79 Vector3f r2 = c.body2RelPoint; 80 81 Vector3f relativeVelocity = Vector3f(0.0f, 0.0f, 0.0f); 82 relativeVelocity += body1.linearVelocity + cross(body1.angularVelocity, r1); 83 relativeVelocity -= body2.linearVelocity + cross(body2.angularVelocity, r2); 84 float velocityProjection = dot(relativeVelocity, c.normal); 85 86 // Check if the bodies are already moving apart 87 if (velocityProjection > 0.0f) 88 return; 89 90 float bounce = (body1.bounce + body2.bounce) * 0.5f; 91 float damping = 0.9f; 92 float C = max(0, -bounce * c.initialVelocityProjection - damping); 93 94 float bias = 0.01f; 95 96 // Velocity-based position correction 97 /* 98 float allowedPenetration = 0.01f; 99 float biasFactor = 0.3f; // 0.1 to 0.3 100 bias = biasFactor * (1.0f / dt) * max(0.0f, c.penetration - allowedPenetration); 101 */ 102 float a = velocityProjection; 103 float b = c.effectiveMass; 104 105 float normalImpulse = (C - a + bias) / b; 106 107 //if (normalImpulse < 0.0f) 108 // normalImpulse = 0.0f; 109 110 // Friction 111 float mu = (body1.friction + body2.friction) * 0.5f; 112 Vector3f fVec = Vector3f(0.0f, 0.0f, 0.0f); 113 114 Vector3f tn1 = c.fdir1; 115 Vector3f tw1 = c.fdir1.cross(r1); 116 Vector3f tn2 = -c.fdir1; 117 Vector3f tw2 = -c.fdir1.cross(r2); 118 float ta = dot(relativeVelocity, c.fdir1); 119 float tb = dot(tn1, tn1 * body1.invMass) 120 + dot(tw1, tw1 * body1.invInertiaTensor) 121 + dot(tn2, tn2 * body2.invMass) 122 + dot(tw2, tw2 * body2.invInertiaTensor); 123 float fImpulse1 = -ta / tb; 124 fImpulse1 = clamp(fImpulse1, -normalImpulse * mu, normalImpulse * mu); 125 126 tn1 = c.fdir2; 127 tw1 = c.fdir2.cross(r1); 128 tn2 = -c.fdir2; 129 tw2 = -c.fdir2.cross(r2); 130 ta = dot(relativeVelocity, c.fdir2); 131 tb = dot(tn1, tn1 * body1.invMass) 132 + dot(tw1, tw1 * body1.invInertiaTensor) 133 + dot(tn2, tn2 * body2.invMass) 134 + dot(tw2, tw2 * body2.invInertiaTensor); 135 float fImpulse2 = -ta / tb; 136 fImpulse2 = clamp(fImpulse2, -normalImpulse * mu, normalImpulse * mu); 137 138 c.accumulatedfImpulse1 += fImpulse1; 139 c.accumulatedfImpulse2 += fImpulse2; 140 141 fVec = c.fdir1 * fImpulse1 + c.fdir2 * fImpulse2; 142 143 Vector3f impulseVec = c.normal * normalImpulse; 144 145 body1.applyImpulse(+impulseVec, c.point); 146 body2.applyImpulse(-impulseVec, c.point); 147 148 if (body1.useFriction) body1.applyImpulse(+fVec, c.point); 149 if (body2.useFriction) body2.applyImpulse(-fVec, c.point); 150 } 151 152 void solvePositionError(Contact* c, uint numContacts) 153 { 154 RigidBody body1 = c.body1; 155 RigidBody body2 = c.body2; 156 157 Vector3f r1 = c.body1RelPoint; 158 Vector3f r2 = c.body2RelPoint; 159 160 Vector3f prv = Vector3f(0.0f, 0.0f, 0.0f); 161 prv += body1.pseudoLinearVelocity + cross(body1.pseudoAngularVelocity, r1); 162 prv -= body2.pseudoLinearVelocity + cross(body2.pseudoAngularVelocity, r2); 163 float pvp = dot(prv, c.normal); 164 165 if (c.penetration <= 0.0f) 166 return; 167 168 float ERP = (1.0f / numContacts) * 0.94f; 169 float pc = c.penetration * ERP; 170 //c.penetration -= pc; 171 c.penetration = 0.0f; 172 173 if (pvp >= pc) 174 return; 175 176 float a = pvp; 177 float impulse = (pc - a) / c.effectiveMass; 178 179 Vector3f impulseVec = c.normal * impulse; 180 181 body1.applyPseudoImpulse(+impulseVec, c.point); 182 body2.applyPseudoImpulse(-impulseVec, c.point); 183 } 184